
DESIGN OF CONTROLLERS FOR A MULTI-DEGREE-OF-FREEDOM SPHERICAL 
WHEEL MOTOR 

 
Hungsun Son 

Ph. D. Candidate, Woodruff School of Mechanical Engineering
Georgia Institute of Technology 

Atlanta, GA 30332-0405  

Kok-Meng Lee 
Professor, Woodruff School of Mechanical Engineering 

Georgia Institute of Technology 
Atlanta, GA 30332-0405 

 
 

ABSTRACT 
Most existing spherical motors have been developed on the 

operational principles similar to their single-axis counterparts; 
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This paper presents the control system design for a particular 
form of variable-reluctance spherical motors, referred to here as 
a spherical wheel motor (SWM). Unlike most of the existing 
spherical motors where focuses have been on the control of the 
three-DOF angular displacement, the SWM offers a means to 
control the orientation of a continuously rotating shaft. 
Specifically, we demonstrate an effective method to decouple 
the open-loop (OL) control of the spin rate from that of the 
inclination, leading to a practical OL system combining a 
switching (spin-rate) controller and a model-based inclination 
controller. The OL system presented here provides the 
fundamental control structure for the SWM. To account for un-
modeled external torques, we extend the design to allow 
feedback with a PD controller and a high-gain observer. The 
effectiveness of the controllers has been investigated by 
comparing their performance numerically under the influence 
of an unknown external torque.  

INTRODUCTION 
Growing demands for miniature devices in modern 

industries involving natural products and/or bio-tissues have 
motivated the development of novel actuators for high-speed 
spindles and high-accuracy stages capable of precision 
orientation/torque control of the machine tool or work piece 
[1]. Existing multi-DOF manipulators [2-3] generally use a 
combination of single-axis actuators to control their orientation.  
They also require an external force/torque sensor for 
applications (such as bio-medical surgery or cutting of highly 
deformable materials). Driven by stringent accuracy and 
tolerance requirements, various forms of micro-motion parallel 
mechanisms with three or more single-axis actuators were 
proposed. These multi-DOF mechanisms, however, are 
generally bulky, and lack of dexterity in negotiating the 
orientation of the cutter or work-piece. Ball-joint-like actuators 
(capable of three-DOF orientation in a single joint with built-in 
force/torque estimation) offer an attractive solution to eliminate 
motion singularities.  
1
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for example, DC, switched reluctance (SR), or PM stepper 
motors. However, closed-loop control systems for multi-DOF 
spherical motors are much more difficult to design due to their 
nonlinear rotor dynamics, complex magnetic fields, and 
challenging measurement problems. Nevertheless, controller 
design techniques for single-axis actuators can be extended to 
multi-DOF spherical motors, and are further explored here.  

Recently, nonlinear control techniques for single-axis 
motors (such as nonlinear observer, feedback linearization, 
adaptive and robust control, etc.) have been studied by 
numerous researchers. By expanding the system and 
measurement functions about the current estimate state, Ueda et 
al. [4] applied a new nonlinear (or extended linear) observer 
that estimates the transient state of the power system to a 
smooth-rotor synchronous generator. Lawrence et al. [5] 
derived an identity state observer for a PM synchronous motor 
by reconstructing the electrical and mechanical states of the 
motor from the current and voltage measurements; their 
nonlinear observer (described in the rotor coordinate frame) 
estimates the stator currents, and the rotor velocity and 
position. High-gain observer techniques have recently been 
demonstrated to play an important role in the design of output 
feedback control of nonlinear systems. Dabroom et al. [6] 
proposed the digital control of nonlinear systems using high-
gain observers. They experimentally validated the closed-loop 
analysis and showed that the sampled-data controller recovers 
the performance of the continuous time controller as the 
sampling frequency and observer gain become sufficiently 
large. Zhu et al. [7] proposed a linearization-based controller 
with a nonlinear state observer which estimates the rotor 
position and speed, and demonstrated the stability of the 
closed-loop system, including the observer through the 
Lyapunov stability theory.  

The remainder of this paper offers the following: 
1. We present the mechanical structure of a multi-DOF SWM 

designed for manipulating the orientation of a continuously 
rotating shaft. Based on this design, we derive the torque 
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model in closed form, which is essential for dynamics 
modeling and controller design of the motor. 

2. We develop three controllers for the SWM and present their 
characteristics; namely, open-loop (OL), PD, and PD with a 
high-gain observer. The OL controller consists of two parts.  
The 1st part is a switching controller based on the principle 
of a VR stepper [1] [8] for regulating the spin rate, while 
the 2nd part is based on the inverse torque model for 
manipulating the inclination.  The OL controller provides 
the fundamental design structure for the SWM and thus 
severs as a basis for the other two feedback controller 
designs. 

3. We illustrate the effectiveness of the controllers by 
simulation and compare their performance under the 
influence of an unknown external torque.  

MECHANICAL STRUCTURE AND DYNAMIC MODEL 
Figure 1(a) shows the CAD model of a SWM consisting of 

16 rotor PM’s and 20 stator EM’s equally spaced on four 
circular planes. As shown in Fig. 1(b), the PM’s and EM’s are 
grouped in pairs and every two pole-pairs form a plane, and 
their magnetization axes pass radially through the center. The 
SWM structure has a well-balanced symmetry electro 
mechanically. The magnetization axes of the mr rotor PM pole 
pairs and ms stator EM pole-pairs are given by (1) and (2) 
respectively in their own body coordinate frames: 

T1( 1) cos cos cos sin sini
i r ri r ri rφ δ φ δ φ−= − ⎡ ⎤⎣ ⎦mx  (1) 

where i= 1, 2… mr; ( 1)ri riδ δ= − ; and 2 /r rmδ π= .  
T

cos cos cos sin sinj s sj s sj sφ δ φ δ φ⎡ ⎤= ⎣ ⎦sX  (2) 

where j= 1, 2… ms; ( 1)sj sjδ δ= − ; and 2 /s smδ π= .  In (1) 

and (2), rφ  and sφ  are the angles between the magnetization 
axes and the XY plane defined in Fig. 1(b). Unlike ms which 
may be odd or even, mr, is always an even number. 

 
 

(a) CAD model [8] (b) Stator and rotor pole-pairs 

Fig. 1 Schematics illustrating the mechanical structure of a SWM 

Torque Model 
Magnetic forces involved in the SWM can be calculated 

using the Lorenz force equation: 
Id= − ×∫F Bv A    where  I d= − ∫∫ J Siw  (3a,b) 

where B is the magnetic field; I is current through the 
conductor; and A is the normalized vector of the current 
direction. In (3b), the current density vector J is directly used 
in the calculation and thus, it is not necessary to compute the 
magnetic flux generated by the current loop. Thus, the Lorenz 
Downloaded 28 Jun 2011 to 218.199.85.117. Redistribution subject to A
force calculation involves only the B-fields of the permanent 
magnets. The magnetic field B of the rotor PM’s can be 
computed by the DMP method [9-10], which gives the solution 
in closed form. However, the PM’s rotates with respects to the 
stator EM’s.  To compute the force acting on the current-
carrying jth EM, the total magnetic field B is expressed in the jth 
EM coordinates cjx . Figure 2 shows the XYZ Euler angles (α, 
β, γ), which has no singularity in the domain of interest, for the 
coordinate transformation from the rotor rx  to the stator sx . 
In the local coordinate system of the jth EM, the position of the 
ith PM is given by (4): 

[ ]cj cj mi⎡ ⎤⎣ ⎦s srx = L L x  (4) 

where [ ]
C C C S S C C S S S
S C C C S S S S C S C S
S S C C C

γ β γ α β γ α β γ α

γ β α γ γ α β γ α β γ α

β α β α β

⎛ ⎞− +
⎜ ⎟= − − +
⎜ ⎟−⎝ ⎠

srL ; 

0
s s

sj s sj s c

sj s sj s c

j

C S
S S S C C
C S C C S

φ φ

θ φ θ φ θ

θ φ θ φ θ

⎛ ⎞−
⎜ ⎟⎡ ⎤ =⎣ ⎦ ⎜ ⎟
⎜ ⎟− −⎝ ⎠

c sL ; C and S represent cosine and 

sine respectively; and the subscripts of C and S denote their 
respective angles. 

 
Fig. 2 XYZ Coordinate transformation  

Once the force acting on the jth EM is computed, the 
resultant torque for all EM’s can be computed from (5): 

[ ]T
total X Y ZT T T ⎡ ⎤= = ⎣ ⎦s1 2 mT T T ... T u� � �  (5) 

where ( )3 1 T ( , , )i i
iEM

m dSdLβ α β γ× ⎛ ⎞⎡ ⎤
∈ = ⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
∑∫j cjsT L� \ v ; and 

T

1 2 ...
smJ J J⎡ ⎤= ⎣ ⎦u   

The torque vector (5) is orientation dependent and must be 
evaluated numerically from the volume integral in real time.  
To reduce the computation to a tractable form, we take 
advantages that the torque is linearly proportional to the current 
and hence apply the principle of superposition [8][9] to 
compute the total magnetic torque acting on the rotor:  

ˆ ˆ ˆ
total ⎡ ⎤≈ ⎣ ⎦s1 j mT K K K u" "  (6a) 

1

ˆ ( ) if  0
ˆ

if  =00                                   
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j k

j k
j kk

j k

f
ϕ ϕ

ϕ
=

=

⎧ ⎧ ⎫×⎪ ⎪⎪ − × ≠⎨ ⎬⎪ ×= ⎪ ⎪⎨ ⎩ ⎭
⎪
⎪ ×⎩
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j
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s r

s rK

s r

 (6b) 
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where ˆ ( )f ϕ curve-fits the torque between a PM pole-pair and 
an EM pole-pair in terms of the separation angle ϕ given by 
(7): 

( ) ( )1cos /jk j k j kϕ −= •s r s r . (7) 

Equation of Motion 
The equation of motion can be derived using the 

Lagrangian formulation in terms of the XYZ Euler angles (α, 
β, γ), which has the following form: 

[ ] 2 1 2( , ) extM C C Q Tfq q q+ + = +�  (8) 

where T
1 [ ]q α β γ= ; 2 1q q= � ;Text is the disturbance torque; Cf 

is the frictional torque of mechanical bearing; and where 
 2 2 0

0 0
0

t a t

t

t a

I C I S I S
I

I S I

β β β

β

⎡ ⎤+ −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎣ ⎦

M  (8a) 

2

2( )

( , ) ( )
a t a

t a a

a

I I S C I C

C q q I I S C I C
I C

β β β

β β β

β

αβ βγ

α αγ
αβ

⎡ ⎤− −
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

� �� �
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 (8b) 

and 0
0 0 1

X

Y

Z

S C S S C T
S C T

T

β γ β γ β

γ γ

−⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

Q  (8c) 

In (8a,b), a zzI I=  ; t xx yyI I I= = ; and the mass center of the 
rotor is assumed to coincide with the center of rotation. In (8c), 
Q is in xyz rotor coordinates and represents the contributions of 
the applied (magnetic) torque to the generalized moments.  
Since the inertia matrix [M] is positive-definite in the range of 
inclination motion (-20°≤ α, β≤ 20°), the nonlinear dynamics 
(8) can be expressed in the standard state forms as 

3 31 3 3 3 3

3 32

00
( )

q I
q

Iq f q
×× ×

×

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = + ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
Q�  (9) 

where [ ] 1 3 1( ) ( )f q q R− ×= ∈M C  is given by 

( )
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{ }
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I

q I q C I q I I q S q

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥⎡ ⎤− + + −⎢ ⎥⎣ ⎦⎣ ⎦

 (9a) 

which is linearized around the desired state for observer design: 
[ ] [ ]
[ ] [ ]3 4

21[ ]
dd

j

i t q qq q

f
q I

==

∂ ⎡ ⎤⎛ ⎞
= =⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦

1

A A

A A
A  (9b) 

where [ ] [ ]3 30 ×=1A ; [ ] [ ]2 3 3tI ×=A I ; I is the identity matrix;  

[ ]
42

3 52

62

0 0
0 0
0 0

dq q

A
A
A

=

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A ; [ ]
44 45 46

4 54 56

64 65 66

0

dq q

A A A
A A
A A A

=

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A ; 

( ) 2
42 5 4 4 6 2 22 3 3 sin sect a aA q I q I q I q q q= − + ; 

[ ]52 4 1 3 4 2 3 6 2( ) cos 2 sinA q I I q q I q q= − + ; 
2

62 5 6 2 4 2 4 2 2sec 3( ) sin 2 (2 3 ) sec tana t a t aA q I q q I I q q I I q q q⎡ ⎤= + − + −⎣ ⎦ ; 

A

A

A

A

A

C

g
d
o

A

o
F
th
am
fo

w
fa
an

S

fo

w
g

n
n
n
p

tr

T
an

se
g

Downloaded 28 Jun 2011 to 218.199.85.117. Redistribution subje
44 5 2(2 3 ) tant aI I q q= − ; [ ]54 1 3 4 2 3 6 22( ) sin cosA I I q q I q q= − − ; 
[ ]64 5 2 2 2(2 3 )sin tan cost a tq I I q q I q= − − ; 

[ ]45 6 4 2 2(2 3 ) sin seca t aI q I I q q q= + − ; 
[ ]65 6 4 2 2 4 2(2 3 ) sin tan cosa t a tI q I I q q q I q q= + − − ; and 

46 5 2secaI q q= ; 56 3 4 2cos 2A I q q= − ; and 66 5 2tanaA I q q=  

ONTROLLER DESIGN OF SWM 
We illustrate three SWM controllers; OL, PD, and a high-

ain observer. The OL controller provides the fundamental 
esign structure for the SWM and thus severs as a basis for the 
ther two feedback controller designs.  

. Open-loop (OL) Controller 
A model-based OL controller (that is designed to perform 

rientation control of a continuously spinning rotor as shown in 
ig. 3) consists of two parts; one for the (α, β) inclination, and 
e other for the spin rate γ� (or switching control). The 
plitude-modulated current inputs of the SWM have the 

llowing form:  

( )sat 1sj j ju u uγ αβ
⎡ ⎤= +⎣ ⎦

  where j=1,2,…ms  (10) 
here juγ  governs the spin-rate; juαβ is an incremental 
ctor regulating the rotor inclination about the X and Y axes; 
d sat[ ] indicates saturation. 

 
Fig. 3 OL controller of SWM 

witching (spin motion) Controller 
To facilitate the design of a switching controller, we define 

llowing parameters: 
Angle of plane symmetry: ,( ) 180sym r sLCMψ δ δ= ≤ °  

Minimum step size: min ( , )r sGCDψ δ δ=   
here LCM and GCD are the least common multiplier and 
reatest common divisor of their arguments.  

Due to symmetry, the EM pole-pairs can be grouped into 
( )int 360 /sym symψ= ° phases, and only /s symm n input currents 

eed to be calculated.  At each of the switching steps, 
sym PM pole-pairs align with the EM pole-pairs when 
rojected on the XY-plane. 

For a given minψ , maxn  levels of electronic “gear” 
ansmission can be designed, where  

( )max minint rn δ ψ= . 
he maxn speed levels are based on different step sizes which are 
 integer factor of ψmin: 

minnψ ψ=  where max 1, 2,...,n n=  
For the pole-pairs defined by (1) and (2), the switching 

quences with the minimum step size minψ ψ= have the form 
iven in Table 1, where all the rows repeat after 
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every 2 /N s symS m n= . By deduction, other different switching 

sequences with a step size minnψ  can be made up from the 
sequence number SN defined as follows: 

( 1)NS nj n= − − ,  where j =1, …, ms. 
If N sS m> , N N sS S m= − . The SN row in Table 1 specifies the 
polarities of the EM’s for that sequence (or time step). 

Table 1 Minimum-step switching 
EM pole-pairs 

SN 
1 2 3 "  /s symm n  

1 N S N #  N 
2 N S N  S 
#  N S N  S 

/ 1s symm n −  N S S  S 
/s symm n  N N S  S 

/ 1s symm n +  S N S  S 
/ 2s symm n +  S N S  N 
#  S N S  N 

2 / 1s symm n −  S N N  N 
2 /s symm n  S S N  N 

From Table 1, the input regulating the spin takes the form: 
( 1) sgn sin( )j

j mj s ju u tγ ω θ⎡ ⎤= − +⎣ ⎦  (11) 

( )max/s sn n tω π= Δ  and max min( 1) /j on n jnθ π ψ θ= − − − −  
where  j = 1, 2, …, sm ; n=1, 2, ..., nmax; ∆ts=update sampling 
rate; min0 oθ ψ< < ; sgn( ) 1, 1x = − corresponding to x≥0 and x<0 
respectively; and sω is the switching frequency of the square 
wave. The steady-state spin-rate ssγ� is linearly proportional 
to sω and ψ while the choice of the current magnitude mju  
depends on the rotor dynamics.  

Inclination controller 
As illustrated in Fig, 1, the rotor which is structurally 

symmetric and operated on the push-pull principle is open-loop 
stable. The rotor tends to be at the local minimum field energy 
states; these are local stable equilibrium positions to which the 
rotor would move from any perturbed position within the local 
boundary through the shortest path during the transient. The 
inclination control is designed about the local equilibrium 
(α=β=γ=0°).  Given the desired orientation [αd βd], the 
required torque at this state is computed at γ=0 from (12a): 

⎡ ⎤ =⎣ ⎦ αβ dT(α,β) u T�  (12a) 
The current to generate this torque is given by the inverse 
(torque) model in (12b): 

( ) d⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
-1T T

αβu T T T T� � �  (12b) 

Once the inclination and spin currents are computed from (11) 
and (12) respectively, the total current inputs can be determined 
from (10). 

In order to express the inclination control law in closed-
form, we describe the inclination of a continuously spinning 
rotor using the ZYZ Euler angles ( , ,α β γ ). In this 
representation, α  is the rotation of the rotor shaft (or z axis) 

ab
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1. 
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out the Z axis; β is the angle of inclination between the 
or shaft and the Z axis, and γ is the spin of the rotor shaft 
out its own z axis. Thus, for real-time computation of the 
ordinate transformation, we define [ ]α β γ  in (13):  

 ( )1cot sin cotβ β α−= −  (13a) 

and ( )1sin sin / sinα α β−= −  (13b) 

The inclination controller is designed as follows: 
The magnitude of the spin current in (11) is normalized to 
unity, |umj|=1, which maintains the spinning rotor atα=β=0. 
The required current vector to incline the rotor at other 
angle is given by (12).  
We decouple the α  and β  motion control by defining 
two Fourier series functions 1( )jf α and 2 ( )jf β in (14):  

, 1 2ˆ ( ) ( )j j ju f fαβ α β=  (14) 
The coefficients of the two Fourier series are found by 
minimizing the following square-error function: 

( )2

, ,ˆj j jE u uαβ αβ= −  (14a) 

where  
 

2

1
1

( ) cos( ) sin( )j ji ji
i

f a i b iα α α
=

⎡ ⎤= +⎣ ⎦∑  (14b) 

and 
3

2
1

( ) cos( ) sin( )j jo ji ji
i

f c d i e iβ β β
=

⎡ ⎤= + +⎣ ⎦∑  (14c) 

e ZYZ Euler angle representation has a singularity 
0β= =  and is used only to obtain (14) in closed form for 

lination control.  

PD controller 
PD controllers have been widely used to eliminate the effect 

uncertainty and track the desired command for the control of 
ctromagnetic actuators in a number of robotic areas. Figure 
shows the classical PD controller with the nonlinear 

namics of the SWM.  

 
Fig. 4 PD controller of SWM 

The desired torque for the PD controller is given in terms 
the position tracking error as follows: 

[ ] ( ) [ ] ( )p 1 d 2T K x K xt t= +� �  (15) 
ere 1 1 1( ) ( )dx q qt t= −� ; and 2 2 2( ) ( )dx q qt t= −� . In (15), the 
trixes [Kp] and [Kd] are positive definite. Once the desired 
que is calculated, the actual current input vector is computed 
m the inverse torque model (12) for the control of 
lination along with (11) for the spin rate control.  

bility of PD controller 
The stability of the PD controller is analyzed using the 

apunov candidate function [9] given in (16): 

( )T T
2 1 1

1 [ ] [ ]
2 2 px M x x K xV = +� � � �  (16) 

e time derivative of the Lyapunov function is   

Copyright © 2007 by ASME
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( ) ( )T T T
2 1 1 2 1

1 [ ] [ ] [ ]
2 2 p px M x x K x x T K xdV

dt
= + = − −� � � � � � �  (16a) 

which can be shown to be  
T T
2 2[ ] 0dx K xV = − ≤� � �  (16b) 

Along with (15), (16b) implies that the Lyapunov function is 
only zero at 2 0x =� . Therefore, the SWM with the PD 
controller is stable and converge to the desired state. 

C. High gain observer with linear approximation 
The interest to design a compact actuator with minimum 

hardware, an observer to estimate unmeasured outputs for a 
practical control design has been developed as shown in Fig. 5.  
The observer has been based on a linear approximation around 
the desired (final) states for the nonlinear dynamics (9).  With 
the assumption that the rotor orientation can be measured by an 
assembly of Hall Effect sensors [10], the forward torque model 
(6) can be computed in real-time.  

 
Fig. 5 High gain observer with linear approximation for error dynamics 

The linear error dynamics is given in (17): 
 ]= +x [A x [B]Q�� �  

[=z C]x�  
(17) 

where T
⎡ ⎤⎣ ⎦3×3 3×3[B] = 0 I and [ ]= 3×3 3×3[C] I 0 . To provide an 

estimate on the unmeasured error signals (angular velocities) 
around the desired state, a linear high-gain (full state) observer 
for the tracking error dynamics is designed. In terms of 
estimated state ˆˆ d= −x q q , 

 ˆ ˆ ˆ[ ( )= + + −x A]x [B]Q [H] z z�  
ˆ ˆ=z [C]x  

(18) 

The dynamics of the estimated error ˆe x x= −�  is then given 
by 

( )= =e [A]-[H][C] e [Λ]e�  (19) 

In (18) and (19), [ ]Block Diag=
T

1 2[H] H  H where  
1 2 3Diag / / /j j j
j j jα ε α ε α ε⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦jH ; jε (j=1,2) is a positive 

constant to be specified; and the positive constants αi
j are 

chosen such that the roots of (20) satisfy time response 
specifications in the left-half plane of the complex domain. It 
guarantees asymptotic error convergence lim ( ) 0

t
t

→∞
=e . This 

indicates the stability of the observer dynamics.  
det [ ] 0Is − Λ =  (20) 

The separation principle allows us to design the controller and 
observer separately to guarantee the stability of the overall 
system. The stability of the PD controller has been shown in 
(16), and can be extended to include the high gain observer.  
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SIMULATION RESULTS 
The effectiveness of the controllers for the SWM (Fig. 1) 

is illustrated by simulation. The parameters used in the 
simulation are detailed in Tables 2 and 3. 
Table 2 Stator and rotor pole pair 

Stator EM pole OD = 0.75 in, 1050 turns 
Coil wire and resistance 29 AWG, 6.46 Ohms 
Current (2 EM’s in series) 4 Amperes 
Rotor radius  76.2 mm (3 inches) 
Cylindrical PM OD=L=12.5mm (0.5in) 
Air-gap between EM & PM 0.762mm (0.03in) 

Table 3 Values used in the setup 
Rotor radius 76.2 mm (3 inches) 

Offset of mass centre 0r =
K  

M. of Inertia, (kg-m2) Ia = 6.0576e-005; It =3.8628e-005 
Frictional  coefficient Cf 0.3 Nm sec 

Stator EM’s 20 (2 layers of 10) 
Magnetization φ s = 26º; δ s = 36º 

Current limit usat = 1 Ampere 
Rotor PM’s 16 (2 layers of 8) 

Magnetization φ r = 20º; δ r = 45º 
R=d=6.35mm, g=0.5mm, and μ0M0=1.35Tesla  

Spin motion 
For the SWM (Fig.1), 180symψ = ° implies that the 10 (pole-

pairs of) EM’s can be divided into 2symn = phases; the 6th to 10th 
EM’s have the same current profiles as 1st to 5th EM’s 
respectively. Additionally, the minimum step size of 

min 9ψ = ° suggests that max 5n = different spin-speed levels can be 
designed for the OL control. The plan view showing the EM 
layout and he switching sequences for five different spin-speed 
levels ( 1, 2...5n = ) are given in Table 4, upon which the 
switching current can be intuitively derived as follows: 
1. From the current polarity in Table 1, the switching current 

vector γu is obtained and shown in Fig. 6, where the 
horizontal axis indicates SN (which is also the time step).  

2. For a particular speed level n, the switching current has a 
period T which depends on the number of sequences SN and 
is given (in terms of sampling interval ∆ts) in Table 4.   

3. Each time step the rotor spins minnψ ψ= degrees and the 
rotor requires 360 /ψ steps to complete one revolution. 
Thus, the spin rate (in rpm) directly depends on n and ∆ts. 
Table 5 shows an example for ∆ts=1 ms.   
The switching current can also be expressed mathematically 

(11), where sω and θj are given in Table 5 (θo=5°, ∆ts=1 ms). 
Table 4: Switching controller for 1, 2...5n = spin-speed levels 

n ψ SN Period, T 

1 9° 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 90°, 10∆ts 
2 18° 1, 3, 5, 7, 9 90°, 5∆ts 

3 27° 1, 4, 7, 10, 3, 6, 9, 2, 5, 8 270°,10∆ts 

4 36° 1, 5, 9, 3, 7 180°, 5∆ts 
 

Plan view of coil layout 5 45° 1, 6 90°, 2∆ts 
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Fig. 6 Timing diagram for five different spin-speed levels 

Table 5: Parameters of switching controller  
n θj ωs (rad/s) T(ms) ssγ� rpm 

1 -0.1571j-0.0873 628 10 1500 
2 -0.3142j-0.7156 1,257 5 3000 
3 -0.4713j-1.3439 1,885 10 4500 
4 -0.6284j-1.9723 2,513 5 6000 
5 -0.7855j-2.6006 3,142 2 7500 

θo=5°, ∆ts=1ms 

OL Inclination 
The OL inclination controller (14) has been optimized 

minimizing (14a) using the MATLAB Optimization toolbox; 
the computed unknown parameters in (14b, c) are detailed in 
Tables 6 and 7 for α  and β respectively.  

The computed currents of the OL inclination controller are 
plotted in Figs. 7(a)-(e) showing the current profiles of the 1st 
to 5th EM’s. Figure 7(f) shows the current components at 

6o
s rβ φ φ= − = (Fig. 1b) when the 1st pair of EM aligns with 

the PM.  Due to the symmetrical structure designed to operate 
on the push-pull principle, it can be easily shown using (12b) 
that the currents to 6th to 10th EM’s have the equal magnitude 
but opposite direction to that to 1st to 5th EM’s. Similar 
arguments can be made for the pairs j=2,5 and j=3,4 as shown 
in Fig. 7(f).  
Table 6 Fourier series constant for the inclination α current vector 

J 1 2 3 
ai1 -134.896 -144.083 -101.69 
ai2 134.89 144.074 101.682 
bi1 6374.87 5162.52 3843.15 
bi2 -3185.02 -2579.32 -1919.34 

Due to the symmetry about α , uαβ,5=uαβ,2, uαβ,4=uαβ,3. 

Table 7 Fourier series constant for the inclination β current vector 
J 1 2 3 4 5 
cio .035466 -0.091224 -0.003365 -0.003365 -0.091224 
di1 .02134 -0.130895 0.013119 -0.036560 -0.12672 
di2 -0.09967 0.040402 0.005075 -0.003483 0.055141 
di3 -0.01214 -0.054836 0.003483 -0.005075 -0.048777 
ei1 -0.47508 0.126491 0.03656 0.013119 -0.142679 
ei2 -0.02024 0.165207 -0.032600 0.032600 -0.158953 
ei3 .118731 0.032188 -0.023501 0.023501 -0.037096 

Feedback Control 
The controller gain matrices for the PD controller are set to 

[Kp]=23I [Kd]=I, which minimize the current input saturation.  
For the high-gain observer, the parameters ε1=ε2=0.01 and αi

j = 
−5 (i=1,2 and j=1,2,3) are used. The eigenvalues are compared as 
follows: 

PD: -0.98±31.52j; -0.02±0.73j; -0.50±4.77j 
Observer (×100): -1.34±j0.49; -3.66±j0.18; -3.62; -1.38 

Thus, the observer dynamics is faster than that of the controller.  

in
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(a) (b) 

 
(c) (d) 

 
(e) (f) 6β = D  

Fig. 7 Inclination current inputs 

Figure 8(a) shows the rotor trajectory from an arbitrary 
itial position (α=β=0, γ=30°) to the desired position (α=5°, 
=γ=0°). The corresponding torque is given in Fig. 8(b). This 
itializes the rotor which is then commanded to spin at the 
ecified inclination. Figure 9 shows the simulation results at 

=5° (0.0873 radians), β=0° and 19.6 rad/sec γ =� (187.5 
m) with a constant external torque Text = [0.05 0 0]T Nm. The 
mulation results of the model-based OL controller and the PD 
ntroller with/without the high-gain observer are compared. 

he maximum steady state error of the controllers is compared 
 Table 8. As expected, the OL alone cannot compensate any 

nknown torque. The addition of a feedback loop successfully 
rives the rotor to the desired orientation, and attenuates 
scillations. The error dynamics with a high gain observer 
nverge to zero faster than the classical PD controller. 

 
(a) Rotor position (b) Torque 
Fig. 8 Initialization to the desired position (α=5°,β=γ=0°) 

ONCLUSIONS 
We presented three controllers for a multi-DOF spherical 

tuator (SWM).  The first is a model-based open-loop (OL) 
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controller which serves as an essential basis for feedback 
control system designs.  The OL control presented here offers 
an effective method to decouple the control of the spin rate 
from that of the inclination and thus allow the OL controller to 
consist of two independent parts; a switching (spin-rate) 
controller based on the principle of a stepper, and an inclination 
controller based on the inverse torque model. The OL controller 
shows the feasibility of operation without any disturbance. We 
further extend the design to allow feedback controller to be 
implemented. In this study, we simulate the closed loop 
controller for output tracking and disturbance rejection.  

 

 
(a) Output Tracking for desired Euler angles (α=5°,β=0) 

 

 
(b) Error of inclination (c)Torque 

Fig. 9 Simulation comparisons 

Table8 Maximum steady state Error (|Ess|) 
Max(|Ess|) (deg) OL PD PD with Observer 

α 0.24 0.20 0.05 
β 0.19 0.07 0.04 
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NOMENCLATURE 
Capitalized symbols Lowercase symbols 
[A] Linearized system matrix i The number of PM 
[B] Input matrix j The number of EM 
[C] Output matrix e Estimation error 
C Coriolis matrix mr Number of PM 
Cf Friction matrix ms Number of EM 
Ej Error of jth current  n Sequence number 
F x,y,z component forces q Generalized coordinates 
T x,y,z component torque uγ Control inputs of spin 
Kp Proportional gain matrix uαβ Control inputs if inclination 
Kd Derivative gain matrix us Control inputs 
I Current û  Estimation of current function 
Ia, Moment of inertia along z x�  Error state vector 
It Moment of inertia along x,y z�  Estimation Error state vector 
J Current density Greek letter symbols 
L Transformation matrix α, β, γ ZYZ Euler angles 
[M] Mass matrix α,β,γ  XYZ Euler angles 

Mo Magnetization φr,  
Separation angle between PM 
and XY plane 

SN Sequence Number φs 
Separation angle between EM  
XY plane 

T Period time ε Positive constant for observer 
Text External torque vector δr, δs Separation angle of PM ,EM 
Sx sin (x) Ψmin Angle of minimum step 
Cx cos(x) Ψsym Angle of plane symmetry 
Q Generalized torques μο free space permeability  
V Lyapunov function   
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